ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.06023
43
0

Dual Caption Preference Optimization for Diffusion Models

9 February 2025
Amir Saeidi
Yiran Luo
Agneet Chatterjee
Shamanthak Hegde
Bimsara Pathiraja
Yezhou Yang
Chitta Baral
    DiffM
ArXivPDFHTML
Abstract

Recent advancements in human preference optimization, originally developed for Large Language Models (LLMs), have shown significant potential in improving text-to-image diffusion models. These methods aim to learn the distribution of preferred samples while distinguishing them from less preferred ones. However, existing preference datasets often exhibit overlap between these distributions, leading to a conflict distribution. Additionally, we identified that input prompts contain irrelevant information for less preferred images, limiting the denoising network's ability to accurately predict noise in preference optimization methods, known as the irrelevant prompt issue. To address these challenges, we propose Dual Caption Preference Optimization (DCPO), a novel approach that utilizes two distinct captions to mitigate irrelevant prompts. To tackle conflict distribution, we introduce the Pick-Double Caption dataset, a modified version of Pick-a-Pic v2 with separate captions for preferred and less preferred images. We further propose three different strategies for generating distinct captions: captioning, perturbation, and hybrid methods. Our experiments show that DCPO significantly improves image quality and relevance to prompts, outperforming Stable Diffusion (SD) 2.1, SFT_Chosen, Diffusion-DPO, and MaPO across multiple metrics, including Pickscore, HPSv2.1, GenEval, CLIPscore, and ImageReward, fine-tuned on SD 2.1 as the backbone.

View on arXiv
@article{saeidi2025_2502.06023,
  title={ Dual Caption Preference Optimization for Diffusion Models },
  author={ Amir Saeidi and Yiran Luo and Agneet Chatterjee and Shamanthak Hegde and Bimsara Pathiraja and Yezhou Yang and Chitta Baral },
  journal={arXiv preprint arXiv:2502.06023},
  year={ 2025 }
}
Comments on this paper