Large Language Models (LLMs) with API-calling capabilities enabled building effective Language Agents (LA), while also revolutionizing the conventional task-oriented dialogue (TOD) paradigm. However, current approaches face a critical dilemma: TOD systems are often trained on a limited set of target APIs, requiring new data to maintain their quality when interfacing with new services, while LAs are not trained to maintain user intent over multi-turn conversations. Because both robust multi-turn management and advanced function calling are crucial for effective conversational agents, we evaluate these skills on three popular benchmarks: MultiWOZ 2.4 (TOD), BFCL V3 (LA), and API-Bank (LA), and our analyses reveal that specialized approaches excel in one domain but underperform in the other. To bridge this chasm, we introduce CoALM (Conversational Agentic Language Model), a unified approach that integrates both conversational and agentic capabilities. We created CoALM-IT, a carefully constructed multi-task dataset that interleave multi-turn ReAct reasoning with complex API usage. Using CoALM-IT, we train three models CoALM 8B, CoALM 70B, and CoALM 405B, which outperform top domain-specific models, including GPT-4o, across all three benchmarks. This demonstrates the feasibility of a single model approach for both TOD and LA, setting a new standard for conversational agents.
View on arXiv@article{acikgoz2025_2502.08820, title={ Can a Single Model Master Both Multi-turn Conversations and Tool Use? CoALM: A Unified Conversational Agentic Language Model }, author={ Emre Can Acikgoz and Jeremiah Greer and Akul Datta and Ze Yang and William Zeng and Oussama Elachqar and Emmanouil Koukoumidis and Dilek Hakkani-Tür and Gokhan Tur }, journal={arXiv preprint arXiv:2502.08820}, year={ 2025 } }