ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.10054
44
0

Towards Polyp Counting In Full-Procedure Colonoscopy Videos

17 February 2025
Luca Parolari
Andrea Cherubini
Lamberto Ballan
Carlo Biffi
ArXivPDFHTML
Abstract

Automated colonoscopy reporting holds great potential for enhancing quality control and improving cost-effectiveness of colonoscopy procedures. A major challenge lies in the automated identification, tracking, and re-association (ReID) of polyps tracklets across full-procedure colonoscopy videos. This is essential for precise polyp counting and enables automated computation of key quality metrics, such as Adenoma Detection Rate (ADR) and Polyps Per Colonoscopy (PPC). However, polyp ReID is challenging due to variations in polyp appearance, frequent disappearance from the field of view, and occlusions. In this work, we leverage the REAL-Colon dataset, the first open-access dataset providing full-procedure videos, to define tasks, data splits and metrics for the problem of automatically count polyps in full-procedure videos, establishing an open-access framework. We re-implement previously proposed SimCLR-based methods for learning representations of polyp tracklets, both single-frame and multi-view, and adapt them to the polyp counting task. We then propose an Affinity Propagation-based clustering method to further improve ReID based on these learned representations, ultimately enhancing polyp counting. Our approach achieves state-of-the-art performance, with a polyp fragmentation rate of 6.30 and a false positive rate (FPR) below 5% on the REAL-Colon dataset. We release code atthis https URL.

View on arXiv
@article{parolari2025_2502.10054,
  title={ Towards Polyp Counting In Full-Procedure Colonoscopy Videos },
  author={ Luca Parolari and Andrea Cherubini and Lamberto Ballan and Carlo Biffi },
  journal={arXiv preprint arXiv:2502.10054},
  year={ 2025 }
}
Comments on this paper