Spiking Neural Networks (SNNs) are valued for their ability to process spatio-temporal information efficiently, offering biological plausibility, low energy consumption, and compatibility with neuromorphic hardware. However, the commonly used Leaky Integrate-and-Fire (LIF) model overlooks neuron heterogeneity and independently processes spatial and temporal information, limiting the expressive power of SNNs. In this paper, we propose the Dual Adaptive Leaky Integrate-and-Fire (DA-LIF) model, which introduces spatial and temporal tuning with independently learnable decays. Evaluations on both static (CIFAR10/100, ImageNet) and neuromorphic datasets (CIFAR10-DVS, DVS128 Gesture) demonstrate superior accuracy with fewer timesteps compared to state-of-the-art methods. Importantly, DA-LIF achieves these improvements with minimal additional parameters, maintaining low energy consumption. Extensive ablation studies further highlight the robustness and effectiveness of the DA-LIF model.
View on arXiv@article{zhang2025_2502.10422, title={ DA-LIF: Dual Adaptive Leaky Integrate-and-Fire Model for Deep Spiking Neural Networks }, author={ Tianqing Zhang and Kairong Yu and Jian Zhang and Hongwei Wang }, journal={arXiv preprint arXiv:2502.10422}, year={ 2025 } }