In the astronomical observation field, determining the allocation of observation resources of the telescope array and planning follow-up observations for targets of opportunity (ToOs) are indispensable components of astronomical scientific discovery. This problem is computationally challenging, given the online observation setting and the abundance of time-varying factors that can affect whether an observation can be conducted. This paper presents ROARS, a reinforcement learning approach for online astronomical resource-constrained scheduling. To capture the structure of the astronomical observation scheduling, we depict every schedule using a directed acyclic graph (DAG), illustrating the dependency of timing between different observation tasks within the schedule. Deep reinforcement learning is used to learn a policy that can improve the feasible solution by iteratively local rewriting until convergence. It can solve the challenge of obtaining a complete solution directly from scratch in astronomical observation scenarios, due to the high computational complexity resulting from numerous spatial and temporal constraints. A simulation environment is developed based on real-world scenarios for experiments, to evaluate the effectiveness of our proposed scheduling approach. The experimental results show that ROARS surpasses 5 popular heuristics, adapts to various observation scenarios and learns effective strategies with hindsight.
View on arXiv@article{zhang2025_2502.11134, title={ Solving Online Resource-Constrained Scheduling for Follow-Up Observation in Astronomy: a Reinforcement Learning Approach }, author={ Yajie Zhang and Ce Yu and Chao Sun and Jizeng Wei and Junhan Ju and Shanjiang Tang }, journal={arXiv preprint arXiv:2502.11134}, year={ 2025 } }