ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.11422
33
0

Planning of Heuristics: Strategic Planning on Large Language Models with Monte Carlo Tree Search for Automating Heuristic Optimization

17 February 2025
Chaoxu Mu
Xufeng Zhang
Hui Wang
ArXivPDFHTML
Abstract

Heuristics have achieved great success in solv- ing combinatorial optimization problems (COPs). However, heuristics designed by humans re- quire too much domain knowledge and testing time. Given the fact that Large Language Mod- els (LLMs) possess strong capabilities to under- stand and generate content, and a knowledge base that covers various domains, which offer a novel way to automatically optimize heuristics. There- fore, we propose Planning of Heuristics (PoH), an optimization method that integrates the self- reflection of LLMs with the Monte Carlo Tree Search (MCTS), a well-known planning algo- rithm. PoH iteratively refines generated heuristics by evaluating their performance and providing im- provement suggestions. Our method enables to it- eratively evaluate the generated heuristics (states) and improve them based on the improvement sug- gestions (actions) and evaluation results (rewards), by effectively simulating future states to search for paths with higher rewards. In this paper, we apply PoH to solve the Traveling Salesman Prob- lem (TSP) and the Flow Shop Scheduling Prob- lem (FSSP). The experimental results show that PoH outperforms other hand-crafted heuristics and Automatic Heuristic Design (AHD) by other LLMs-based methods, and achieves the signifi- cant improvements and the state-of-the-art per- formance of our proposed method in automating heuristic optimization with LLMs to solve COPs.

View on arXiv
@article{mu2025_2502.11422,
  title={ Planning of Heuristics: Strategic Planning on Large Language Models with Monte Carlo Tree Search for Automating Heuristic Optimization },
  author={ Chaoxu Mu and Xufeng Zhang and Hui Wang },
  journal={arXiv preprint arXiv:2502.11422},
  year={ 2025 }
}
Comments on this paper