ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.12159
80
0
v1v2 (latest)

Causal Interpretations in Observational Studies: The Role of Sociocultural Backgrounds and Team Dynamics

4 February 2025
Jun Wang
Bei Yu
    CML
ArXiv (abs)PDFHTML
Main:9 Pages
4 Figures
Bibliography:3 Pages
4 Tables
Appendix:5 Pages
Abstract

The prevalence of drawing causal conclusions from observational studies has raised concerns about potential exaggeration in science communication. While some believe causal language should only apply to randomized controlled trials, others argue that rigorous methods can justify causal claims in observational studies. Ideally, causal language should align with the strength of the evidence. However, through the analysis of over 80,000 observational study abstracts using computational linguistic and regression methods, we found that causal language is more frequently used by less experienced authors, smaller research teams, male last authors, and authors from countries with higher uncertainty avoidance indices. These findings suggest that the use of causal language may be influenced by external factors such as the sociocultural backgrounds of authors and the dynamics of research collaboration. This newly identified link deepens our understanding of how such factors help shape scientific conclusions in causal inference and science communication.

View on arXiv
Comments on this paper