294
v1v2 (latest)

SEFL: Enhancing Educational Assignment Feedback with LLM Agents

Main:7 Pages
5 Figures
Bibliography:3 Pages
5 Tables
Abstract

Providing high-quality feedback to student assignments is crucial for student success, but it is constrained by time and costs. In this work, we introduce Synthetic Educational Feedback Loops (SEFL), a synthetic data framework designed to generate data that resembles immediate, on-demand feedback at scale without relying on extensive, real-world student assignments. To get this type of data, two large language models (LLMs) operate in teacher-student roles to simulate assignment completion and formative feedback, generating synthetic pairs of student work and corresponding critiques and actionable improvements from a teacher. With this data, we fine-tune smaller, more computationally efficient LLMs on these synthetic pairs, enabling them to replicate key features of high-quality, goal-oriented feedback. Unlike personalized tutoring approaches that offer multi-turn, individualized instruction, SEFL specifically focuses on replicating the teacher-student assignment feedback loop in higher education. Through comprehensive evaluations with four LLM judges and three human experts, we demonstrate that SEFL-tuned models outperform both their non-tuned counterparts in feedback quality and an existing baseline. The potential for societal impact is reinforced by extensive qualitative comments by ratings by human stakeholders -- both students and higher education instructors. All in all, SEFL has substantial potential to transform feedback processes for higher education and beyond.

View on arXiv
Comments on this paper