ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.14099
174
0

Point Cloud Geometry Scalable Coding Using a Resolution and Quality-conditioned Latents Probability Estimator

IEEE Access (IEEE Access), 2025
21 February 2025
Daniele Mari
André F. R. Guarda
Nuno M. M. Rodrigues
Simone Milani
Fernando Pereira
ArXiv (abs)PDFHTML
Main:16 Pages
11 Figures
Bibliography:2 Pages
4 Tables
Abstract

In the current age, users consume multimedia content in very heterogeneous scenarios in terms of network, hardware, and display capabilities. A naive solution to this problem is to encode multiple independent streams, each covering a different possible requirement for the clients, with an obvious negative impact in both storage and computational requirements. These drawbacks can be avoided by using codecs that enable scalability, i.e., the ability to generate a progressive bitstream, containing a base layer followed by multiple enhancement layers, that allow decoding the same bitstream serving multiple reconstructions and visualization specifications. While scalable coding is a well-known and addressed feature in conventional image and video codecs, this paper focuses on a new and very different problem, notably the development of scalable coding solutions for deep learning-based Point Cloud (PC) coding. The peculiarities of this 3D representation make it hard to implement flexible solutions that do not compromise the other functionalities of the codec. This paper proposes a joint quality and resolution scalability scheme, named Scalable Resolution and Quality Hyperprior (SRQH), that, contrary to previous solutions, can model the relationship between latents obtained with models trained for different RD tradeoffs and/or at different resolutions. Experimental results obtained by integrating SRQH in the emerging JPEG Pleno learning-based PC coding standard show that SRQH allows decoding the PC at different qualities and resolutions with a single bitstream while incurring only in a limited RD penalty and increment in complexity w.r.t. non-scalable JPEG PCC that would require one bitstream per coding configuration.

View on arXiv
Comments on this paper