ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.15009
60
0

Contextualizing Search Queries In-Context Learning for Conversational Rewriting with LLMs

24 February 2025
Raymond Wilson
Chase Carter
Cole Graham
ArXivPDFHTML
Abstract

Conversational query rewriting is crucial for effective conversational search, yet traditional supervised methods require substantial labeled data, which is scarce in low-resource settings. This paper introduces Prompt-Guided In-Context Learning, a novel approach that leverages the in-context learning capabilities of Large Language Models (LLMs) for few-shot conversational query rewriting. Our method employs carefully designed prompts, incorporating task descriptions, input/output format specifications, and a small set of illustrative examples, to guide pre-trained LLMs to generate context-independent queries without explicit fine-tuning. Extensive experiments on benchmark datasets, TREC and Taskmaster-1, demonstrate that our approach significantly outperforms strong baselines, including supervised models and contrastive co-training methods, across various evaluation metrics such as BLEU, ROUGE-L, Success Rate, and MRR. Ablation studies confirm the importance of in-context examples, and human evaluations further validate the superior fluency, relevance, and context utilization of our generated rewrites. The results highlight the potential of prompt-guided in-context learning as an efficient and effective paradigm for low-resource conversational query rewriting, reducing the reliance on extensive labeled data and complex training procedures.

View on arXiv
@article{wilson2025_2502.15009,
  title={ Contextualizing Search Queries In-Context Learning for Conversational Rewriting with LLMs },
  author={ Raymond Wilson and Chase Carter and Cole Graham },
  journal={arXiv preprint arXiv:2502.15009},
  year={ 2025 }
}
Comments on this paper