ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.17518
42
0

Ensemble RL through Classifier Models: Enhancing Risk-Return Trade-offs in Trading Strategies

23 February 2025
Zheli Xiong
ArXivPDFHTML
Abstract

This paper presents a comprehensive study on the use of ensemble Reinforcement Learning (RL) models in financial trading strategies, leveraging classifier models to enhance performance. By combining RL algorithms such as A2C, PPO, and SAC with traditional classifiers like Support Vector Machines (SVM), Decision Trees, and Logistic Regression, we investigate how different classifier groups can be integrated to improve risk-return trade-offs. The study evaluates the effectiveness of various ensemble methods, comparing them with individual RL models across key financial metrics, including Cumulative Returns, Sharpe Ratios (SR), Calmar Ratios, and Maximum Drawdown (MDD). Our results demonstrate that ensemble methods consistently outperform base models in terms of risk-adjusted returns, providing better management of drawdowns and overall stability. However, we identify the sensitivity of ensemble performance to the choice of variance threshold {\tau}, highlighting the importance of dynamic {\tau} adjustment to achieve optimal performance. This study emphasizes the value of combining RL with classifiers for adaptive decision-making, with implications for financial trading, robotics, and other dynamic environments.

View on arXiv
@article{xiong2025_2502.17518,
  title={ Ensemble RL through Classifier Models: Enhancing Risk-Return Trade-offs in Trading Strategies },
  author={ Zheli Xiong },
  journal={arXiv preprint arXiv:2502.17518},
  year={ 2025 }
}
Comments on this paper