NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms

We introduce NotaGen, a symbolic music generation model aiming to explore the potential of producing high-quality classical sheet music. Inspired by the success of Large Language Models (LLMs), NotaGen adopts pre-training, fine-tuning, and reinforcement learning paradigms (henceforth referred to as the LLM training paradigms). It is pre-trained on 1.6M pieces of music in ABC notation, and then fine-tuned on approximately 9K high-quality classical compositions conditioned on "period-composer-instrumentation" prompts. For reinforcement learning, we propose the CLaMP-DPO method, which further enhances generation quality and controllability without requiring human annotations or predefined rewards. Our experiments demonstrate the efficacy of CLaMP-DPO in symbolic music generation models with different architectures and encoding schemes. Furthermore, subjective A/B tests show that NotaGen outperforms baseline models against human compositions, greatly advancing musical aesthetics in symbolic music generation.
View on arXiv@article{wang2025_2502.18008, title={ NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms }, author={ Yashan Wang and Shangda Wu and Jianhuai Hu and Xingjian Du and Yueqi Peng and Yongxin Huang and Shuai Fan and Xiaobing Li and Feng Yu and Maosong Sun }, journal={arXiv preprint arXiv:2502.18008}, year={ 2025 } }