ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.19014
291
0

Robust Over-the-Air Computation with Type-Based Multiple Access

26 February 2025
Marc Martinez-Gost
Ana I. Pérez-Neira
M. Lagunas
ArXiv (abs)PDFHTML
Main:4 Pages
2 Figures
Bibliography:1 Pages
Abstract

This paper utilizes the properties of type-based multiple access (TBMA) to investigate its effectiveness as a robust approach for over-the-air computation (AirComp) in the presence of Byzantine attacks, this is, adversarial strategies where malicious nodes intentionally distort their transmissions to corrupt the aggregated result. Unlike classical direct aggregation (DA) AirComp, which aggregates data in the amplitude of the signals and are highly vulnerable to attacks, TBMA distributes data over multiple radio resources, enabling the receiver to construct a histogram representation of the transmitted data. This structure allows the integration of classical robust estimators and supports the computation of diverse functions beyond the arithmetic mean, which is not feasible with DA. Through extensive simulations, we demonstrate that robust TBMA significantly outperforms DA, maintaining high accuracy even under adversarial conditions, and showcases its applicability in federated learning (FEEL) scenarios. Additionally, TBMA reduces channel state information (CSI) requirements, lowers energy consumption, and enhances resiliency by leveraging the diversity of the transmitted data. These results establish TBMA as a scalable and robust solution for AirComp, paving the way for secure and efficient aggregation in next-generation networks.

View on arXiv
Comments on this paper