ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.19605
169
0

Mixture models for data with unknown distributions

26 February 2025
M. E. J. Newman
ArXiv (abs)PDFHTML
Main:22 Pages
12 Figures
2 Tables
Abstract

We describe and analyze a broad class of mixture models for real-valued multivariate data in which the probability density of observations within each component of the model is represented as an arbitrary combination of basis functions. Fits to these models give us a way to cluster data with distributions of unknown form, including strongly non-Gaussian or multimodal distributions, and return both a division of the data and an estimate of the distributions, effectively performing clustering and density estimation within each cluster at the same time. We describe two fitting methods, one using an expectation-maximization (EM) algorithm and the other a Bayesian non-parametric method using a collapsed Gibbs sampler. The former is numerically efficient, but gives only point estimates of the probability densities. The latter is more computationally demanding but returns a full Bayesian posterior and also an estimate of the number of components. We demonstrate our methods with a selection of illustrative applications and give code implementing both algorithms.

View on arXiv
Comments on this paper