Continuous Adversarial Text Representation Learning for Affective Recognition

While pre-trained language models excel at semantic understanding, they often struggle to capture nuanced affective information critical for affective recognition tasks. To address these limitations, we propose a novel framework for enhancing emotion-aware embeddings in transformer-based models. Our approach introduces a continuous valence-arousal labeling system to guide contrastive learning, which captures subtle and multi-dimensional emotional nuances more effectively. Furthermore, we employ a dynamic token perturbation mechanism, using gradient-based saliency to focus on sentiment-relevant tokens, improving model sensitivity to emotional cues. The experimental results demonstrate that the proposed framework outperforms existing methods, achieving up to 15.5% improvement in the emotion classification benchmark, highlighting the importance of employing continuous labels. This improvement demonstrates that the proposed framework is effective in affective representation learning and enables precise and contextually relevant emotional understanding.
View on arXiv@article{son2025_2502.20613, title={ Continuous Adversarial Text Representation Learning for Affective Recognition }, author={ Seungah Son and Andrez Saurez and Dongsoo Har }, journal={arXiv preprint arXiv:2502.20613}, year={ 2025 } }