29
1

The Structural Complexity of Matrix-Vector Multiplication

Abstract

We consider the problem of preprocessing an n×nn\times n matrix M, and supporting queries that, for any vector v, returns the matrix-vector product Mv. This problem has been extensively studied in both theory and practice: on one side, practitioners have developed algorithms that are highly efficient in practice, whereas theoreticians have proven that the problem cannot be solved faster than naive multiplication in the worst-case. This lower bound holds even in the average-case, implying that existing average-case analyses cannot explain this gap between theory and practice. Therefore, we study the problem for structured matrices. We show that for n×nn\times n matrices of VC-dimension d, the matrix-vector multiplication problem can be solved with O~(n2)\tilde{O}(n^2) preprocessing and O~(n21/d)\tilde O(n^{2-1/d}) query time. Given the low constant VC-dimensions observed in most real-world data, our results posit an explanation for why the problem can be solved so much faster in practice. Moreover, our bounds hold even if the matrix does not have a low VC-dimension, but is obtained by (possibly adversarially) corrupting at most a subquadratic number of entries of any unknown low VC-dimension matrix. Our results yield the first non-trivial upper bounds for many applications. In previous works, the online matrix-vector hypothesis (conjecturing that quadratic time is needed per query) was used to prove many conditional lower bounds, showing that it is impossible to compute and maintain high-accuracy estimates for shortest paths, Laplacian solvers, effective resistance, and triangle detection in graphs subject to node insertions and deletions in subquadratic time. Yet, via a reduction to our matrix-vector-multiplication result, we show we can maintain the aforementioned problems efficiently if the input is structured, providing the first subquadratic upper bounds in the high-accuracy regime.

View on arXiv
@article{anand2025_2502.21240,
  title={ The Structural Complexity of Matrix-Vector Multiplication },
  author={ Emile Anand and Jan van den Brand and Rose McCarty },
  journal={arXiv preprint arXiv:2502.21240},
  year={ 2025 }
}
Comments on this paper