ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.00522
24
0

Periodic Materials Generation using Text-Guided Joint Diffusion Model

1 March 2025
Kishalay Das
Subhojyoti Khastagir
Pawan Goyal
Seung-Cheol Lee
S. Bhattacharjee
Niloy Ganguly
    DiffM
ArXivPDFHTML
Abstract

Equivariant diffusion models have emerged as the prevailing approach for generating novel crystal materials due to their ability to leverage the physical symmetries of periodic material structures. However, current models do not effectively learn the joint distribution of atom types, fractional coordinates, and lattice structure of the crystal material in a cohesive end-to-end diffusion framework. Also, none of these models work under realistic setups, where users specify the desired characteristics that the generated structures must match. In this work, we introduce TGDMat, a novel text-guided diffusion model designed for 3D periodic material generation. Our approach integrates global structural knowledge through textual descriptions at each denoising step while jointly generating atom coordinates, types, and lattice structure using a periodic-E(3)-equivariant graph neural network (GNN). Extensive experiments using popular datasets on benchmark tasks reveal that TGDMat outperforms existing baseline methods by a good margin. Notably, for the structure prediction task, with just one generated sample, TGDMat outperforms all baseline models, highlighting the importance of text-guided diffusion. Further, in the generation task, TGDMat surpasses all baselines and their text-fusion variants, showcasing the effectiveness of the joint diffusion paradigm. Additionally, incorporating textual knowledge reduces overall training and sampling computational overhead while enhancing generative performance when utilizing real-world textual prompts from experts.

View on arXiv
@article{das2025_2503.00522,
  title={ Periodic Materials Generation using Text-Guided Joint Diffusion Model },
  author={ Kishalay Das and Subhojyoti Khastagir and Pawan Goyal and Seung-Cheol Lee and Satadeep Bhattacharjee and Niloy Ganguly },
  journal={arXiv preprint arXiv:2503.00522},
  year={ 2025 }
}
Comments on this paper