ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.01161
24
1

Split Gibbs Discrete Diffusion Posterior Sampling

3 March 2025
Wenda Chu
Yang Song
Yisong Yue
ArXivPDFHTML
Abstract

We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.

View on arXiv
@article{chu2025_2503.01161,
  title={ Split Gibbs Discrete Diffusion Posterior Sampling },
  author={ Wenda Chu and Yang Song and Yisong Yue },
  journal={arXiv preprint arXiv:2503.01161},
  year={ 2025 }
}
Comments on this paper