50
0

CoPL: Collaborative Preference Learning for Personalizing LLMs

Abstract

Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment.

View on arXiv
@article{choi2025_2503.01658,
  title={ CoPL: Collaborative Preference Learning for Personalizing LLMs },
  author={ Youngbin Choi and Seunghyuk Cho and Minjong Lee and MoonJeong Park and Yesong Ko and Jungseul Ok and Dongwoo Kim },
  journal={arXiv preprint arXiv:2503.01658},
  year={ 2025 }
}
Comments on this paper