Generator-Assistant Stepwise Rollback Framework for Large Language Model Agent
Large language model (LLM) agents typically adopt a step-by-step reasoning framework, in which they interleave the processes of thinking and acting to accomplish the given task. However, this paradigm faces a deep-rooted one-pass issue whereby each generated intermediate thought is plugged into the trajectory regardless of its correctness, which can cause irreversible error propagation. To address the issue, this paper proposes a novel framework called Generator-Assistant Stepwise Rollback (GA-Rollback) to induce better decision-making for LLM agents. Particularly, GA-Rollback utilizes a generator to interact with the environment and an assistant to examine each action produced by the generator, where the assistant triggers a rollback operation upon detection of incorrect actions. Moreover, we introduce two additional strategies tailored for the rollback scenario to further improve its effectiveness. Extensive experiments show that GA-Rollback achieves significant improvements over several strong baselines on three widely used benchmarks. Our analysis further reveals that GA-Rollback can function as a robust plug-and-play module, integrating seamlessly with other methods.
View on arXiv@article{li2025_2503.02519, title={ Generator-Assistant Stepwise Rollback Framework for Large Language Model Agent }, author={ Xingzuo Li and Kehai Chen and Yunfei Long and Xuefeng Bai and Yong Xu and Min Zhang }, journal={arXiv preprint arXiv:2503.02519}, year={ 2025 } }