The exponential growth of unstructured text data presents a fundamental challenge in modern data management and information retrieval. While Large Language Models (LLMs) have shown remarkable capabilities in natural language processing, their potential to transform unstructured text into standardized, structured formats remains largely unexplored - a capability that could revolutionize data processing workflows across industries. This study breaks new ground by systematically evaluating LLMs' ability to convert unstructured recipe text into the structured Cooklang format. Through comprehensive testing of four models (GPT-4o, GPT-4o-mini, Llama3.1:70b, and Llama3.1:8b), an innovative evaluation approach is introduced that combines traditional metrics (WER, ROUGE-L, TER) with specialized metrics for semantic element identification. Our experiments reveal that GPT-4o with few-shot prompting achieves breakthrough performance (ROUGE-L: 0.9722, WER: 0.0730), demonstrating for the first time that LLMs can reliably transform domain-specific unstructured text into structured formats without extensive training. Although model performance generally scales with size, we uncover surprising potential in smaller models like Llama3.1:8b for optimization through targeted fine-tuning. These findings open new possibilities for automated structured data generation across various domains, from medical records to technical documentation, potentially transforming the way organizations process and utilize unstructured information.
View on arXiv@article{brach2025_2503.02650, title={ The Effectiveness of Large Language Models in Transforming Unstructured Text to Standardized Formats }, author={ William Brach and Kristián Košťál and Michal Ries }, journal={arXiv preprint arXiv:2503.02650}, year={ 2025 } }