Incentive Analysis for Agent Participation in Federated Learning
Federated learning offers a decentralized approach to machine learning, where multiple agents collaboratively train a model while preserving data privacy. In this paper, we investigate the decision-making and equilibrium behavior in federated learning systems, where agents choose between participating in global training or conducting independent local training. The problem is first modeled as a stage game and then extended to a repeated game to analyze the long-term dynamics of agent participation. For the stage game, we characterize the participation patterns and identify Nash equilibrium, revealing how data heterogeneity influences the equilibrium behavior-specifically, agents with similar data qualities will participate in FL as a group. We also derive the optimal social welfare and show that it coincides with Nash equilibrium under mild assumptions. In the repeated game, we propose a privacy-preserving, computationally efficient myopic strategy. This strategy enables agents to make practical decisions under bounded rationality and converges to a neighborhood of Nash equilibrium of the stage game in finite time. By combining theoretical insights with practical strategy design, this work provides a realistic and effective framework for guiding and analyzing agent behaviors in federated learning systems.
View on arXiv@article{yi2025_2503.09039, title={ Incentive Analysis for Agent Participation in Federated Learning }, author={ Lihui Yi and Xiaochun Niu and Ermin Wei }, journal={arXiv preprint arXiv:2503.09039}, year={ 2025 } }