ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.10074
47
0

Demoting Security via Exploitation of Cache Demote Operation in Intel's Latest ISA Extension

13 March 2025
Taehun Kim
Hyerean Jang
Youngjoo Shin
ArXivPDFHTML
Abstract

ISA extensions are increasingly adopted to boost the performance of specialized workloads without requiring an entire architectural redesign. However, these enhancements can inadvertently expose new attack surfaces in the microarchitecture. In this paper, we investigate Intel's recently introduced cldemote extension, which promotes efficient data sharing by transferring cache lines from upper-level caches to the Last Level Cache (LLC). Despite its performance benefits, we uncover critical properties-unprivileged access, inter-cache state transition, and fault suppression-that render cldemote exploitable for microarchitectural attacks. We propose two new attack primitives, Flush+Demote and Demote+Time, built on our analysis. Flush+Demote constructs a covert channel with a bandwidth of 2.84 Mbps and a bit error rate of 0.018%, while Demote+Time derandomizes the kernel base address in 2.49 ms on Linux. Furthermore, we show that leveraging cldemote accelerates eviction set construction in non-inclusive LLC designs by obviating the need for helper threads or extensive cache conflicts, thereby reducing construction time by 36% yet retaining comparable success rates. Finally, we examine how ISA extensions contribute to broader microarchitectural attacks, identifying five key exploitable characteristics and categorizing four distinct attack types. We also discuss potential countermeasures, highlighting the far-reaching security implications of emerging ISA extensions.

View on arXiv
@article{kim2025_2503.10074,
  title={ Demoting Security via Exploitation of Cache Demote Operation in Intel's Latest ISA Extension },
  author={ Taehun Kim and Hyerean Jang and Youngjoo Shin },
  journal={arXiv preprint arXiv:2503.10074},
  year={ 2025 }
}
Comments on this paper