ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.12063
109
0

DLA-Count: Dynamic Label Assignment Network for Dense Cell Distribution Counting

15 March 2025
Yuqing Yan
Yirui Wu
ArXiv (abs)PDFHTML
Main:8 Pages
4 Figures
Bibliography:2 Pages
5 Tables
Abstract

Cell counting remains a fundamental yet challenging task in medical and biological research due to the diverse morphology of cells, their dense distribution, and variations in image quality. We present DLA-Count, a breakthrough approach to cell counting that introduces three key innovations: (1) K-adjacent Hungarian Matching (KHM), which dramatically improves cell matching in dense regions, (2) Multi-scale Deformable Gaussian Convolution (MDGC), which adapts to varying cell morphologies, and (3) Gaussian-enhanced Feature Decoder (GFD) for efficient multi-scale feature fusion. Our extensive experiments on four challenging cell counting datasets (ADI, MBM, VGG, and DCC) demonstrate that our method outperforms previous methods across diverse datasets, with improvements in Mean Absolute Error of up to 46.7\% on ADI and 42.5\% on MBM datasets. Our code is available atthis https URL.

View on arXiv
Comments on this paper