SAM2 for Image and Video Segmentation: A Comprehensive Survey

Despite significant advances in deep learning for image and video segmentation, existing models continue to face challenges in cross-domain adaptability and generalization. Image and video segmentation are fundamental tasks in computer vision with wide-ranging applications in healthcare, agriculture, industrial inspection, and autonomous driving. With the advent of large-scale foundation models, SAM2 - an improved version of SAM (Segment Anything Model)has been optimized for segmentation tasks, demonstrating enhanced performance in complex scenarios. However, SAM2's adaptability and limitations in specific domains require further investigation. This paper systematically analyzes the application of SAM2 in image and video segmentation and evaluates its performance in various fields. We begin by introducing the foundational concepts of image segmentation, categorizing foundation models, and exploring the technical characteristics of SAM and SAM2. Subsequently, we delve into SAM2's applications in static image and video segmentation, emphasizing its performance in specialized areas such as medical imaging and the challenges of cross-domain adaptability. As part of our research, we reviewed over 200 related papers to provide a comprehensive analysis of the topic. Finally, the paper highlights the strengths and weaknesses of SAM2 in segmentation tasks, identifies the technical challenges it faces, and proposes future development directions. This review provides valuable insights and practical recommendations for optimizing and applying SAM2 in real-world scenarios.
View on arXiv@article{jiaxing2025_2503.12781, title={ SAM2 for Image and Video Segmentation: A Comprehensive Survey }, author={ Zhang Jiaxing and Tang Hao }, journal={arXiv preprint arXiv:2503.12781}, year={ 2025 } }