Since COVID-19, crowd-counting tasks have gained wide applications. While supervised methods are reliable, annotation is more challenging in high-density scenes due to small head sizes and severe occlusion, whereas it's simpler in low-density scenes. Interestingly, can we train the model in low-density scenes and generalize it to high-density scenes? Therefore, we propose a low- to high-density generalization framework (L2HCount) that learns the pattern related to high-density scenes from low-density ones, enabling it to generalize well to high-density scenes. Specifically, we first introduce a High-Density Simulation Module and a Ground-Truth Generation Module to construct fake high-density images along with their corresponding ground-truth crowd annotations respectively by image-shifting technique, effectively simulating high-density crowd patterns. However, the simulated images have two issues: image blurring and loss of low-density image characteristics. Therefore, we second propose a Head Feature Enhancement Module to extract clear features in the simulated high-density scene. Third, we propose a Dual-Density Memory Encoding Module that uses two crowd memories to learn scene-specific patterns from low- and simulated high-density scenes, respectively. Extensive experiments on four challenging datasets have shown the promising performance of L2HCount.
View on arXiv@article{xu2025_2503.12935, title={ L2HCount:Generalizing Crowd Counting from Low to High Crowd Density via Density Simulation }, author={ Guoliang Xu and Jianqin Yin and Ren Zhang and Yonghao Dang and Feng Zhou and Bo Yu }, journal={arXiv preprint arXiv:2503.12935}, year={ 2025 } }