54
0

Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment

Abstract

Pulmonary hypertension (PH) is frequently underdiagnosed in low- and middle-income countries (LMICs) primarily due to the scarcity of advanced diagnostic tools. Several studies in PH have applied machine learning to low-cost diagnostic tools like 12-lead ECG (12L-ECG), but they mainly focus on areas with limited resources, overlooking areas with no diagnostic tools, such as rural primary healthcare in LMICs. Recent studies have shown the effectiveness of 6-lead ECG (6L-ECG), as a cheaper and portable alternative in detecting various cardiac conditions, but its clinical value for PH detection is not well proved. Furthermore, existing methods treat 12L-/6L-ECG as a single modality, capturing only shared features while overlooking lead-specific features essential for identifying complex cardiac hemodynamic changes. In this paper, we propose Lead-Specific Electrocardiogram Multimodal Variational Autoencoder (LS-EMVAE), a model pre-trained on large-population 12L-ECG data and fine-tuned on task-specific data (12L-ECG or 6L-ECG). LS-EMVAE models each 12L-ECG lead as a separate modality and introduces a hierarchical expert composition using Mixture and Product of Experts for adaptive latent feature fusion between lead-specific and shared features. Unlike existing approaches, LS-EMVAE makes better predictions on both 12L-ECG and 6L-ECG at inference, making it an equitable solution for areas with limited or no diagnostic tools. We pre-trained LS-EMVAE on 800,000 publicly available 12L-ECG samples and fine-tuned it for two tasks: 1) PH detection and 2) phenotyping pre-/post-capillary PH, on in-house datasets of 892 and 691 subjects across 12L-ECG and 6L-ECG settings. Extensive experiments show that LS-EMVAE outperforms existing baselines in both ECG settings, while 6L-ECG achieves performance comparable to 12L-ECG, unlocking its potential for global PH screening in areas without diagnostic tools.

View on arXiv
@article{suvon2025_2503.13470,
  title={ Multimodal Lead-Specific Modeling of ECG for Low-Cost Pulmonary Hypertension Assessment },
  author={ Mohammod N. I. Suvon and Shuo Zhou and Prasun C. Tripathi and Wenrui Fan and Samer Alabed and Bishesh Khanal and Venet Osmani and Andrew J. Swift and Chen and Chen and Haiping Lu },
  journal={arXiv preprint arXiv:2503.13470},
  year={ 2025 }
}
Comments on this paper