Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models

Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate step. In addition, the cost of annotating reasoning processes for reward modeling is high, making large-scale collection of high-quality data challenging. To address this, we propose a novel reward model approach called the Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps at both fine-grained and coarse-grained levels. HRM excels at assessing multi-step reasoning coherence, especially when flawed steps are later corrected through self-reflection. To further reduce the cost of generating training data, we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC), which merges two consecutive reasoning steps into one within the tree structure. By applying HNC to MCTS-generated reasoning trajectories, we enhance the diversity and robustness of HRM training data while introducing controlled noise with minimal computational overhead. Empirical results on the PRM800K dataset show that HRM, together with HNC, provides more stable and reliable evaluations than PRM. Furthermore, cross-domain evaluations on the MATH500 and GSM8K datasets demonstrate HRM's strong generalization and robustness across a variety of reasoning tasks.
View on arXiv@article{wang2025_2503.13551, title={ Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models }, author={ Teng Wang and Zhangyi Jiang and Zhenqi He and Shenyang Tong and Wenhan Yang and Yanan Zheng and Zeyu Li and Zifan He and Hailei Gong }, journal={arXiv preprint arXiv:2503.13551}, year={ 2025 } }