ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.14213
56
1

Rolling Forward: Enhancing LightGCN with Causal Graph Convolution for Credit Bond Recommendation

18 March 2025
Ashraf Ghiye
Baptiste Barreau
Laurent Carlier
Michalis Vazirgiannis
ArXivPDFHTML
Abstract

Graph Neural Networks have significantly advanced research in recommender systems over the past few years. These methods typically capture global interests using aggregated past interactions and rely on static embeddings of users and items over extended periods of time. While effective in some domains, these methods fall short in many real-world scenarios, especially in finance, where user interests and item popularity evolve rapidly over time. To address these challenges, we introduce a novel extension to Light Graph Convolutional Network (LightGCN) designed to learn temporal node embeddings that capture dynamic interests. Our approach employs causal convolution to maintain a forward-looking model architecture. By preserving the chronological order of user-item interactions and introducing a dynamic update mechanism for embeddings through a sliding window, the proposed model generates well-timed and contextually relevant recommendations. Extensive experiments on a real-world dataset from BNP Paribas demonstrate that our approach significantly enhances the performance of LightGCN while maintaining the simplicity and efficiency of its architecture. Our findings provide new insights into designing graph-based recommender systems in time-sensitive applications, particularly for financial product recommendations.

View on arXiv
@article{ghiye2025_2503.14213,
  title={ Rolling Forward: Enhancing LightGCN with Causal Graph Convolution for Credit Bond Recommendation },
  author={ Ashraf Ghiye and Baptiste Barreau and Laurent Carlier and Michalis Vazirgiannis },
  journal={arXiv preprint arXiv:2503.14213},
  year={ 2025 }
}
Comments on this paper