The increasing demand for high-accuracy depth estimation in autonomous driving and augmented reality applications necessitates advanced neural architectures capable of effectively leveraging multiple data modalities. In this context, we introduce the Unified Segmentation Attention Mechanism Network (USAM-Net), a novel convolutional neural network that integrates stereo image inputs with semantic segmentation maps and attention to enhance depth estimation performance. USAM-Net employs a dual-pathway architecture, which combines a pre-trained segmentation model (SAM) and a depth estimation model. The segmentation pathway preprocesses the stereo images to generate semantic masks, which are then concatenated with the stereo images as inputs to the depth estimation pathway. This integration allows the model to focus on important features such as object boundaries and surface textures which are crucial for accurate depth perception. Empirical evaluation on the DrivingStereo dataset demonstrates that USAM-Net achieves superior performance metrics, including a Global Difference (GD) of 3.61\% and an End-Point Error (EPE) of 0.88, outperforming traditional models such as CFNet, SegStereo, and iResNet. These results underscore the effectiveness of integrating segmentation information into stereo depth estimation tasks, highlighting the potential of USAM-Net in applications demanding high-precision depth data.
View on arXiv@article{dayo2025_2503.14950, title={ USAM-Net: A U-Net-based Network for Improved Stereo Correspondence and Scene Depth Estimation using Features from a Pre-trained Image Segmentation network }, author={ Joseph Emmanuel DL Dayo and Prospero C. Naval Jr }, journal={arXiv preprint arXiv:2503.14950}, year={ 2025 } }