ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.16334
31
1

LLM Braces: Straightening Out LLM Predictions with Relevant Sub-Updates

20 March 2025
Ying Shen
Lifu Huang
ArXivPDFHTML
Abstract

Recent findings reveal that much of the knowledge in a Transformer-based Large Language Model (LLM) is encoded in its feed-forward (FFN) layers, where each FNN layer can be interpreted as the summation of sub-updates, each corresponding to a weighted column vector from the FFN's value parameter matrix that often encodes human-interpretable concepts. In light of this, we hypothesize that model performance and behaviors can be further enhanced and controlled by modulating the contributions of these sub-updates based on their relevance to the input or target output style, and propose LLMBRACES, a novel and efficient method that computes relevance scores associated with value vectors in FFN layers and leverages these scores to dynamically adjust the contribution of sub-updates. By optimizing sub-update contributions, LLMBRACES refines the prediction process, leading to more accurate and reliable outputs, much like a 'brace' providing support and stability. Moreover, LLMBRACES can be extended to support conditional control over generation characteristics, such as sentiment, thereby offering fine-grained steering of LLM outputs. Extensive experiments on various LLMs-including Qwen2.5-1.5B, Llama2-7B, and Llama3-8B-demonstrate that LLMBRACES outperforms baseline approaches in both fine-tuning and zero-shot settings while requiring significantly fewer tunable parameters, up to 75% fewer compared to LoRA. Furthermore, LLMBRACES excels in sentiment-controlled generation and toxicity reduction, highlighting its potential for flexible, controlled text generation across applications.

View on arXiv
@article{shen2025_2503.16334,
  title={ LLM Braces: Straightening Out LLM Predictions with Relevant Sub-Updates },
  author={ Ying Shen and Lifu Huang },
  journal={arXiv preprint arXiv:2503.16334},
  year={ 2025 }
}
Comments on this paper