The discovery of novel antibiotics is critical to address the growing antimicrobial resistance (AMR). However, pharmaceutical industries face high costs (over 1billion),longtimelines,andahighfailurerate,worsenedbytherediscoveryofknowncompounds.WeproposeanLLM−basedpipelinethatactsasanalarmsystem,detectingpriorevidenceofantibioticactivitytopreventcostlyrediscoveries.ThesystemintegratesorganismandchemicalliteratureintoaKnowledgeGraph(KG),ensuringtaxonomicresolution,synonymhandling,andmulti−levelevidenceclassification.Wetestedthepipelineonaprivatelistof73potentialantibiotic−producingorganisms,disclosing12negativehitsforevaluation.Theresultshighlighttheeffectivenessofthepipelineforevidencereviewing,reducingfalsenegatives,andacceleratingdecision−making.TheKGfornegativehitsandtheuserinterfaceforinteractiveexplorationwillbemadepubliclyavailable.
@article{delmas2025_2503.16655,
title={ Accelerating Antibiotic Discovery with Large Language Models and Knowledge Graphs },
author={ Maxime Delmas and Magdalena Wysocka and Danilo Gusicuma and André Freitas },
journal={arXiv preprint arXiv:2503.16655},
year={ 2025 }
}