ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.17221
41
0

UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models

21 March 2025
Fanghua Yu
Jinjin Gu
Jinfan Hu
Zheyuan Li
Chao Dong
    DiffM
ArXivPDFHTML
Abstract

We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.

View on arXiv
@article{yu2025_2503.17221,
  title={ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models },
  author={ Fanghua Yu and Jinjin Gu and Jinfan Hu and Zheyuan Li and Chao Dong },
  journal={arXiv preprint arXiv:2503.17221},
  year={ 2025 }
}
Comments on this paper