3D variational autoencoder for fingerprinting microstructure volume elements

Microstructure quantification is an important step towards establishing structure-property relationships in materials. Machine learning-based image processing methods have been shown to outperform conventional image processing techniques and are increasingly applied to microstructure quantification tasks. In this work, we present a 3D variational autoencoder (VAE) for encoding microstructure volume elements (VEs) comprising voxelated crystallographic orientation data. Crystal symmetries in the orientation space are accounted for by mapping to the crystallographic fundamental zone as a preprocessing step, which allows for a continuous loss function to be used and improves the training convergence rate. The VAE is then used to encode a training set of VEs with an equiaxed polycrystalline microstructure with random texture. Accurate reconstructions are achieved with a relative average misorientation error of 9x10-3 on the test dataset, for a continuous latent space with dimension 256. We show that the model generalises well to microstructures with textures, grain sizes and aspect ratios outside the training distribution. Structure-property relationships are explored through using the training set of VEs as initial configurations in various crystal plasticity (CP) simulations. Microstructural fingerprints extracted from the VAE, which parameterise the VEs in a low-dimensional latent space, are stored alongside the volume-averaged stress response, at each strain increment, to uniaxial tensile deformation from CP simulations. This is then used to train a fully connected neural network mapping the input fingerprint to the resulting stress response, which acts as a surrogate model for the CP simulation. The fingerprint-based surrogate model is shown to accurately predict the microstructural dependence in the CP stress response, with a relative mean-squared error of 8.9x10-4 on unseen test data.
View on arXiv@article{white2025_2503.17427, title={ 3D variational autoencoder for fingerprinting microstructure volume elements }, author={ Michael D. White and Michael D. Atkinson and Adam J. Plowman and Pratheek Shanthraj }, journal={arXiv preprint arXiv:2503.17427}, year={ 2025 } }