Prediction tasks in digital pathology are challenging due to the massive size of whole-slide images (WSIs) and the weak nature of training signals. Advances in computing, data availability, and self-supervised learning (SSL) have paved the way for slide-level foundation models (SLFMs) that can improve prediction tasks in low-data regimes. However, working with these models is challenging, with issues such as catastrophic forgetting during fine-tuning and under-utilization of shared information between tasks and modalities. To overcome these two challenges, we propose ModalTune, a novel fine-tuning framework which introduces the Modal Adapter to integrate new modalities without modifying SLFM weights. Additionally, we use large-language models (LLMs) to encode labels as text, capturing semantic relationships and enhancing generalization across multiple tasks and cancer types in a single training recipe. ModalTune achieves state-of-the-art (SOTA) results against both uni-modal and multi-modal models across four cancer types, jointly improving survival and cancer subtype prediction while remaining competitive in pan-cancer settings. Additionally, we show ModalTune is highly generalizable to two out-of-distribution (OOD) datasets. To our knowledge, this is the first unified fine-tuning framework for multi-modal, multi-task, and pan-cancer modeling in digital pathology.
View on arXiv@article{ramanathan2025_2503.17564, title={ ModalTune: Fine-Tuning Slide-Level Foundation Models with Multi-Modal Information for Multi-task Learning in Digital Pathology }, author={ Vishwesh Ramanathan and Tony Xu and Pushpak Pati and Faruk Ahmed and Maged Goubran and Anne L. Martel }, journal={arXiv preprint arXiv:2503.17564}, year={ 2025 } }