Privacy-Preserving Hamming Distance Computation with Property-Preserving Hashing
Main:10 Pages
Bibliography:2 Pages
Abstract
We study the problem of approximating Hamming distance in sublinear time under property-preserving hashing (PPH), where only hashed representations of inputs are available. Building on the threshold evaluation framework of Fleischhacker, Larsen, and Simkin (EUROCRYPT 2022), we present a sequence of constructions with progressively improved complexity: a baseline binary search algorithm, a refined variant with constant repetition per query, and a novel hash design that enables constant-time approximation without oracle access. Our results demonstrate that approximate distance recovery is possible under strong cryptographic guarantees, bridging efficiency and security in similarity estimation.
View on arXivComments on this paper
