DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

The Graph Edit Distance (GED) problem, which aims to compute the minimum number of edit operations required to transform one graph into another, is a fundamental challenge in graph analysis with wide-ranging applications. However, due to its NP-hard nature, traditional A* approaches often suffer from scalability issue, making them computationally intractable for large graphs. Many recent deep learning frameworks address GED by formulating it as a regression task, which, while efficient, fails to recover the edit path -- a central interest in GED. Furthermore, recent hybrid approaches that combine deep learning with traditional methods to recover the edit path often yield poor solution quality. These methods also struggle to generate candidate solutions in parallel, resulting in increased runningthis http URLthis paper, we present a novel approach, DiffGED, that leverages generative diffusion model to solve GED and recover the corresponding edit path. Specifically, we first generate multiple diverse node matching matrices in parallel through a diffusion-based graph matching model. Next, node mappings are extracted from each generated matching matrices in parallel, and each extracted node mapping can be simply transformed into an edit path. Benefiting from the generative diversity provided by the diffusion model, DiffGED is less likely to fall into local sub-optimal solutions, thereby achieving superior overall solution quality close to the exact solution. Experimental results on real-world datasets demonstrate that DiffGED can generate multiple diverse edit paths with exceptionally high accuracy comparable to exact solutions while maintaining a running time shorter than most of hybrid approaches.
View on arXiv@article{huang2025_2503.18245, title={ DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching }, author={ Wei Huang and Hanchen Wang and Dong Wen and Wenjie Zhang and Ying Zhang and Xuemin Lin }, journal={arXiv preprint arXiv:2503.18245}, year={ 2025 } }