Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs

Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
View on arXiv@article{gao2025_2503.18377, title={ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs }, author={ Chang Gao and Kang Zhao and Jianfei Chen and Liping Jing }, journal={arXiv preprint arXiv:2503.18377}, year={ 2025 } }