ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.20102
38
0

Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion

25 March 2025
Chang Chen
Hany Hamed
Doojin Baek
Taegu Kang
Yoshua Bengio
Sungjin Ahn
ArXivPDFHTML
Abstract

This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.

View on arXiv
@article{chen2025_2503.20102,
  title={ Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion },
  author={ Chang Chen and Hany Hamed and Doojin Baek and Taegu Kang and Yoshua Bengio and Sungjin Ahn },
  journal={arXiv preprint arXiv:2503.20102},
  year={ 2025 }
}
Comments on this paper