ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.20939
46
0

Hacia la interpretabilidad de la detección anticipada de riesgos de depresión utilizando grandes modelos de lenguaje

26 March 2025
Horacio Thompson
Maximiliano Sapino
Edgardo Ferretti
M. Errecalde
ArXivPDFHTML
Abstract

Early Detection of Risks (EDR) on the Web involves identifying at-risk users as early as possible. Although Large Language Models (LLMs) have proven to solve various linguistic tasks efficiently, assessing their reasoning ability in specific domains is crucial. In this work, we propose a method for solving depression-related EDR using LLMs on Spanish texts, with responses that can be interpreted by humans. We define a reasoning criterion to analyze users through a specialist, apply in-context learning to the Gemini model, and evaluate its performance both quantitatively and qualitatively. The results show that accurate predictions can be obtained, supported by explanatory reasoning, providing a deeper understanding of the solution. Our approach offers new perspectives for addressing EDR problems by leveraging the power of LLMs.

View on arXiv
@article{thompson2025_2503.20939,
  title={ Hacia la interpretabilidad de la detección anticipada de riesgos de depresión utilizando grandes modelos de lenguaje },
  author={ Horacio Thompson and Maximiliano Sapino and Edgardo Ferretti and Marcelo Errecalde },
  journal={arXiv preprint arXiv:2503.20939},
  year={ 2025 }
}
Comments on this paper