ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2503.21541
49
0

LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing

27 March 2025
Achint Soni
Meet Soni
Sirisha Rambhatla
    DiffM
ArXivPDFHTML
Abstract

Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found onthis https URL

View on arXiv
@article{soni2025_2503.21541,
  title={ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing },
  author={ Achint Soni and Meet Soni and Sirisha Rambhatla },
  journal={arXiv preprint arXiv:2503.21541},
  year={ 2025 }
}
Comments on this paper