PowerGNN: A Topology-Aware Graph Neural Network for Electricity Grids

The increasing penetration of renewable energy sources introduces significant variability and uncertainty in modern power systems, making accurate state prediction critical for reliable grid operation. Conventional forecasting methods often neglect the power grid's inherent topology, limiting their ability to capture complex spatio temporal dependencies. This paper proposes a topology aware Graph Neural Network (GNN) framework for predicting power system states under high renewable integration. We construct a graph based representation of the power network, modeling buses and transmission lines as nodes and edges, and introduce a specialized GNN architecture that integrates GraphSAGE convolutions with Gated Recurrent Units (GRUs) to model both spatial and temporal correlations in system dynamics. The model is trained and evaluated on the NREL 118 test system using realistic, time synchronous renewable generation profiles. Our results show that the proposed GNN outperforms baseline approaches including fully connected neural networks, linear regression, and rolling mean models, achieving substantial improvements in predictive accuracy. The GNN achieves average RMSEs of 0.13 to 0.17 across all predicted variables and demonstrates consistent performance across spatial locations and operational conditions. These results highlight the potential of topology aware learning for scalable and robust power system forecasting in future grids with high renewable penetration.
View on arXiv@article{suri2025_2503.22721, title={ PowerGNN: A Topology-Aware Graph Neural Network for Electricity Grids }, author={ Dhruv Suri and Mohak Mangal }, journal={arXiv preprint arXiv:2503.22721}, year={ 2025 } }