No Free Lunch with Guardrails

As large language models (LLMs) and generative AI become widely adopted, guardrails have emerged as a key tool to ensure their safe use. However, adding guardrails isn't without tradeoffs; stronger security measures can reduce usability, while more flexible systems may leave gaps for adversarial attacks. In this work, we explore whether current guardrails effectively prevent misuse while maintaining practical utility. We introduce a framework to evaluate these tradeoffs, measuring how different guardrails balance risk, security, and usability, and build an efficient guardrail.Our findings confirm that there is no free lunch with guardrails; strengthening security often comes at the cost of usability. To address this, we propose a blueprint for designing better guardrails that minimize risk while maintaining usability. We evaluate various industry guardrails, including Azure Content Safety, Bedrock Guardrails, OpenAI's Moderation API, Guardrails AI, Nemo Guardrails, and our own custom-built guardrails. Additionally, we assess how LLMs like GPT-4o, Gemini 2.0-Flash, Claude 3.5-Sonnet, and Mistral Large-Latest respond under different system prompts, including simple prompts, detailed prompts, and detailed prompts with chain-of-thought (CoT) reasoning. Our study provides a clear comparison of how different guardrails perform, highlighting the challenges in balancing security and usability.
View on arXiv@article{kumar2025_2504.00441, title={ No Free Lunch with Guardrails }, author={ Divyanshu Kumar and Nitin Aravind Birur and Tanay Baswa and Sahil Agarwal and Prashanth Harshangi }, journal={arXiv preprint arXiv:2504.00441}, year={ 2025 } }