There has been a significant increase in the deployment of neural network models, presenting substantial challenges in model adaptation and fine-tuning. Efficient adaptation is crucial in maintaining model performance across diverse tasks and domains. While Low-Rank Adaptation (LoRA) has emerged as a promising parameter-efficient fine-tuning method, its fixed parameter nature limits its ability to handle dynamic task requirements effectively. Adapting models to new tasks can be challenging due to the need for extensive fine-tuning. Current LoRA variants primarily focus on general parameter reduction while overlooking the importance of dynamic parameter adjustment and meta-learning capabilities. Moreover, existing approaches mainly address static adaptations, neglecting the potential benefits of task-aware parameter generation in handling diverse task distributions. To address these limitations, this Ph.D. research proposes a LoRA generation approach to model task relationships and introduces MetaLoRA, a novel parameter-efficient adaptation framework incorporating meta-learning principles. This work develops a comprehensive architecture that integrates meta-parameter generation with adaptive low-rank decomposition, enabling efficient handling of both task-specific and task-agnostic features. MetaLoRA accurately captures task patterns by incorporating meta-learning mechanisms and dynamic parameter adjustment strategies. To our knowledge, this research represents the first attempt to provide a meta-learning enhanced LoRA variant, offering improved adaptation capability while maintaining computational efficiency in model fine-tuning.
View on arXiv@article{wang2025_2504.00460, title={ MetaLoRA: Tensor-Enhanced Adaptive Low-Rank Fine-tuning }, author={ Maolin Wang and Xiangyu Zhao }, journal={arXiv preprint arXiv:2504.00460}, year={ 2025 } }