Given the demand for responsible and trustworthy AI for education, this study evaluates symbolic, sub-symbolic, and neural-symbolic AI (NSAI) in terms of generalizability and interpretability. Our extensive experiments on balanced and imbalanced self-regulated learning datasets of Estonian primary school students predicting 7th-grade mathematics national test performance showed that symbolic and sub-symbolic methods performed well on balanced data but struggled to identify low performers in imbalanced datasets. Interestingly, symbolic and sub-symbolic methods emphasized different factors in their decision-making: symbolic approaches primarily relied on cognitive and motivational factors, while sub-symbolic methods focused more on cognitive aspects, learned knowledge, and the demographic variable of gender -- yet both largely overlooked metacognitive factors. The NSAI method, on the other hand, showed advantages by: (i) being more generalizable across both classes -- even in imbalanced datasets -- as its symbolic knowledge component compensated for the underrepresented class; and (ii) relying on a more integrated set of factors in its decision-making, including motivation, (meta)cognition, and learned knowledge, thus offering a comprehensive and theoretically grounded interpretability framework. These contrasting findings highlight the need for a holistic comparison of AI methods before drawing conclusions based solely on predictive performance. They also underscore the potential of hybrid, human-centered NSAI methods to address the limitations of other AI families and move us closer to responsible AI for education. Specifically, by enabling stakeholders to contribute to AI design, NSAI aligns learned patterns with theoretical constructs, incorporates factors like motivation and metacognition, and strengthens the trustworthiness and responsibility of educational data mining.
View on arXiv@article{hooshyar2025_2504.00615, title={ Towards Responsible and Trustworthy Educational Data Mining: Comparing Symbolic, Sub-Symbolic, and Neural-Symbolic AI Methods }, author={ Danial Hooshyar and Eve Kikas and Yeongwook Yang and Gustav Šír and Raija Hämäläinen and Tommi Kärkkäinen and Roger Azevedo }, journal={arXiv preprint arXiv:2504.00615}, year={ 2025 } }