Do LLMs Surpass Encoders for Biomedical NER?

Recognizing spans of biomedical concepts and their types (e.g., drug or gene) in free text, often called biomedical named entity recognition (NER), is a basic component of information extraction (IE) pipelines. Without a strong NER component, other applications, such as knowledge discovery and information retrieval, are not practical. State-of-the-art in NER shifted from traditional ML models to deep neural networks with transformer-based encoder models (e.g., BERT) emerging as the current standard. However, decoder models (also called large language models or LLMs) are gaining traction in IE. But LLM-driven NER often ignores positional information due to the generative nature of decoder models. Furthermore, they are computationally very expensive (both in inference time and hardware needs). Hence, it is worth exploring if they actually excel at biomedical NER and assess any associated trade-offs (performance vs efficiency). This is exactly what we do in this effort employing the same BIO entity tagging scheme (that retains positional information) using five different datasets with varying proportions of longer entities. Our results show that the LLMs chosen (Mistral and Llama: 8B range) often outperform best encoder models (BERT-(un)cased, BiomedBERT, and DeBERTav3: 300M range) by 2-8% in F-scores except for one dataset, where they equal encoder performance. This gain is more prominent among longer entities of length >= 3 tokens. However, LLMs are one to two orders of magnitude more expensive at inference time and may need cost prohibitive hardware. Thus, when performance differences are small or real time user feedback is needed, encoder models might still be more suitable than LLMs.
View on arXiv@article{obeidat2025_2504.00664, title={ Do LLMs Surpass Encoders for Biomedical NER? }, author={ Motasem S Obeidat and Md Sultan Al Nahian and Ramakanth Kavuluru }, journal={arXiv preprint arXiv:2504.00664}, year={ 2025 } }