We consider the relationship between learnability of a ``base class'' of functions on a set X and learnability of a class of statistical functions derived from the base class. For example, we refine results showing that learnability of a family of functions implies learnability of the family of functions mapping a function in the class to its expectation under a distribution. We will look at both Probably Approximately Correct (PAC) learning, where example inputs and outputs are chosen at random, and online learning, where the examples are chosen adversarially. We establish improved bounds on the sample complexity of learning for statistical classes, stated in terms of combinatorial dimensions of the base class. We do this by adapting techniques introduced in model theory for ``randomizing a structure''. We give particular attention to classes derived from logical formulas, and relate learnability of the statistical classes to properties of the formula. Finally, we provide bounds on the complexity of learning the statistical classes built on top of a logic-based hypothesis class.
View on arXiv@article{anderson2025_2504.00847, title={ Logical perspectives on learning statistical objects }, author={ Aaron Anderson and Michael Benedikt }, journal={arXiv preprint arXiv:2504.00847}, year={ 2025 } }