Scaling Language-Free Visual Representation Learning

Visual Self-Supervised Learning (SSL) currently underperforms Contrastive Language-Image Pretraining (CLIP) in multimodal settings such as Visual Question Answering (VQA). This multimodal gap is often attributed to the semantics introduced by language supervision, even though visual SSL and CLIP models are often trained on different data. In this work, we ask the question: "Do visual self-supervised approaches lag behind CLIP due to the lack of language supervision, or differences in the training data?" We study this question by training both visual SSL and CLIP models on the same MetaCLIP data, and leveraging VQA as a diverse testbed for vision encoders. In this controlled setup, visual SSL models scale better than CLIP models in terms of data and model capacity, and visual SSL performance does not saturate even after scaling up to 7B parameters. Consequently, we observe visual SSL methods achieve CLIP-level performance on a wide range of VQA and classic vision benchmarks. These findings demonstrate that pure visual SSL can match language-supervised visual pretraining at scale, opening new opportunities for vision-centric representation learning.
View on arXiv@article{fan2025_2504.01017, title={ Scaling Language-Free Visual Representation Learning }, author={ David Fan and Shengbang Tong and Jiachen Zhu and Koustuv Sinha and Zhuang Liu and Xinlei Chen and Michael Rabbat and Nicolas Ballas and Yann LeCun and Amir Bar and Saining Xie }, journal={arXiv preprint arXiv:2504.01017}, year={ 2025 } }