4
0

8-DoFs Cable Driven Parallel Robots for Bimanual Teleportation

Abstract

Teleoperation plays a critical role in intuitive robot control and imitation learning, particularly for complex tasks involving mobile manipulators with redundant degrees of freedom (DoFs). However, most existing master controllers are limited to 6-DoF spatial control and basic gripper control, making them insufficient for controlling high-DoF robots and restricting the operator to a small workspace. In this work, we present a novel, low-cost, high-DoF master controller based on Cable-Driven Parallel Robots (CDPRs), designed to overcome these limitations. The system decouples translation and orientation control, following a scalable 3 + 3 + n DoF structure: 3 DoFs for large-range translation using a CDPR, 3 DoFs for orientation using a gimbal mechanism, and n additional DoFs for gripper and redundant joint control. Its lightweight cable-driven design enables a large and adaptable workspace while minimizing actuator load. The end-effector remains stable without requiring continuous high-torque input, unlike most serial robot arms. We developed the first dual-arm CDPR-based master controller using cost-effective actuators and a simple mechanical structure. In demonstrations, the system successfully controlled an 8-DoF robotic arm with a 2-DoF pan-tilt camera, performing tasks such as pick-and-place, knot tying, object sorting, and tape application. The results show precise, versatile, and practical high-DoF teleoperation.

View on arXiv
@article{cheng2025_2504.01554,
  title={ 8-DoFs Cable Driven Parallel Robots for Bimanual Teleportation },
  author={ Hung Hon Cheng and Josie Hughes },
  journal={arXiv preprint arXiv:2504.01554},
  year={ 2025 }
}
Comments on this paper