Video retrieval requires aligning visual content with corresponding natural language descriptions. In this paper, we introduce Modality Auxiliary Concepts for Video Retrieval (MAC-VR), a novel approach that leverages modality-specific tags -- automatically extracted from foundation models -- to enhance video retrieval. We propose to align modalities in a latent space, along with learning and aligning auxiliary latent concepts, derived from the features of a video and its corresponding caption. We introduce these auxiliary concepts to improve the alignment of visual and textual latent concepts, and so are able to distinguish concepts from one other. We conduct extensive experiments on five diverse datasets: MSR-VTT, DiDeMo, TGIF, Charades and YouCook2. The experimental results consistently demonstrate that modality-specific tags improve cross-modal alignment, outperforming current state-of-the-art methods across three datasets and performing comparably or better across the other two.
View on arXiv@article{fragomeni2025_2504.01591, title={ Leveraging Modality Tags for Enhanced Cross-Modal Video Retrieval }, author={ Adriano Fragomeni and Dima Damen and Michael Wray }, journal={arXiv preprint arXiv:2504.01591}, year={ 2025 } }